Name: \qquad

COMPLETED PROBLEMS

Color Planning Problem 1: (solution)

Plan and chart the 8 colors produced by a strict interpretation of this scheme:

Hue Scheme: Complementary

Dominant Hue: Red-Violet
Dominant Value: 4
Dominant Chroma: Middle Low
Out-of-Scheme Accent(s): none

Subordinate Hue(s): \qquad GREEN \qquad Subordinate Value(s): 8
Subordinate Chroma(s): High

	Limited To	Dominant
Value	4,8	4
Hue	RV, G	RV
Chroma	ML, H	ML

Scheme Complementary

Color 1: Hue: ___RV_ Val: ___4__ Chroma: ____ML__
Color 2: Hue: __RV_ Val: __8__ Chroma: ___ML__
Color 3: Hue: _RV___ Val: _4____ Chroma: ____H__
Color 4: Hue: __RV__ Val: _ 8 ___ Chroma: \qquad H

Color 5: Hue: __GRN Val: ___4__ Chroma: ___ML__

Color 6: Hue: __GRN Val: __8__ Chroma: __ML__
Color 7: Hue: _GRN__ Val: _4__ Chroma: _H__
Color 8: Hue: __GRN__ Val: _8__ Chroma: ___H__

At least one of these colors is impractical or impossible.
Which one(s)? And why can it/they not be used?

Note: the order of "Color1", "Color2", etc. does NOT matter. Just make sure that each color within the scheme is identified and specified.

Notice that the "RV" color specs are repeated in the "Grn" colors - that is, the Value-Chroma specs are repeated.
RV 7 H (high chroma not possible at a value 7)
G 7 H (H chroma likely not possible at value 7 -- though Munsell allows any chroma over 10 to be considered 'high'

Name: \qquad

Color Planning Problem 2: (solution)

Plan and chart the 6 colors produced by a strict interpretation of this scheme:
Hue Scheme: Monochromatic
Dominant Hue: Blue Green
Dominant Value: 3
Dominant Chroma: Low
Subordinate Hue(s): \qquad (NONE) \qquad

Domint Chroma. Low
Subordinate Value(s): 1, 7
Subordinate Chroma(s): Middle High
Out-of-Scheme Accent(s): none

Color 1: Hue: __BG__ Val: _1 \qquad Chroma: \qquad
\qquad
Color 2: Hue: __BG__ Val: __3__ Chroma: __L___
Color 3: Hue: __BG__ Val: _7__ Chroma: ___L__

Color 4: Hue: \qquad BG_ Val: _1 \qquad Chroma: __MH

Color 5: Hue: __BG__ Val: __3__ Chroma: __MH___
Color 6: Hue: __BG_ Val: __7__ Chroma: __MH__

At least one of these colors is impractical or impossible.

Which one(s)? And why can it/they not be used?

Note: the order of "Color1", "Color2", etc. does NOT matter. Just make sure that each color within the scheme is identified and specified.

Unlikely Colors in the scheme:
BG $1 / \mathrm{MH}$ is somewhat unlikely - particularly since "value 1 " we treat as black (the Actual Munsell color model, value 1 is quite dark, but not black.) However, a pigment such as Thalo Green does have a lot of chroma range, but it is so dark that we looks its effective chroma.
BG 7/MH is also unlikely.

Name: \qquad

Color Planning Problem 3: (solution)

Plan and chart the 9 colors produced by a strict interpretation of this scheme:
Hue Scheme: Monochromatic
Dominant Hue: Red-Orange
Dominant Value: 4
Subordinate Hue(s): ____NON \qquad
Dominant Chroma: Middle
Subordinate Value(s): 2, 8

Subordinate Chroma(s): Middle High, Low

Name: \qquad

Color Planning Problem 4: (Solution)

Plan and chart the 9 colors produced by a strict interpretation of this scheme:
Hue Scheme: Monochromatic (with neutral)
Out-of-Scheme Accent(s): none
Dominant Hue: Yellow-Orange Subordinate Hue(s): \qquad NONE
Dominant Value: 3
Dominant Chroma: Low
Subordinate Value(s): 1, 7

Subordinate Chroma(s): Middle High, Neutral

Unlikely or impossible colors in the scheme:
YO $1 / \mathrm{MH}$ is the least likely color in the scheme. YO at value 1 (a very dark brown), has very little range of chroma.

Name: \qquad

Color Planning Problem 5: (solution)

Plan and chart the 12 colors produced by a strict interpretation of this scheme:
Hue Scheme: Split Complement
Dominant Hue: RRO
Dominant Value: 7
Dominant Chroma: Middle
Subordinate Hue(s): YYO, ___ BLUE \qquad
Subordinate Value(s): 4
Subordinate Chroma(s): High

Impossible or unlikely colors in the scheme:
The high-chroma colors will often be impossible. The following are most likely impossible:
RRO 7/H
YYO 4/H
B 7/H
Each of these chroma-value combinations are a long way from each hue's intrinsic value.

Name: \qquad

Color Planning Problem 6: (solution)

Plan and chart the 12 colors produced by a strict interpretation of this scheme:
Hue Scheme: Split Complement

Dominant Hue: \qquad RV \qquad
Dominant Value: 4
Dominant Chroma: Middle

Scheme Split Complement
These color are likely all possible - since the highest chroma in the scheme is Middle, most hues can at mid-values (4 and 7 , here)

Name: \qquad
Color Planning Problem 7: (solution)
Plan and chart the 12 colors produced by a strict interpretation of this scheme. Then select instances/colors of subordinate hues so that dominant chroma and dominant value are used to relate all hues. (that is, you will eliminate some colors that are possible in this scheme in order to create a smaller, more limited and more manageable palette.)

Hue Scheme: Split Complement
Dominant Hue: Yellow-Orange
Dominant Value: 7
Subordinate Hue(s): RRV, BBG
Subordinate Value(s): 4
Dominant Chroma: Middle Low
Subordinate Chroma(s): High

Name: \qquad

Color Planning Problem 8: (solution)

Plan and chart the 15 distinct colors produced by a strict interpretation of this scheme:
Hue Scheme: Complementary (with neutral)
Dominant Hue: Yellow-Orange Subordinate Hue(s): \qquad BBV \qquad
Dominant Value: 3
Dominant Chroma: Low
Subordinate Value(s): 1, 7
Subordinate Chroma(s): Middle High, Neutral

								Chr:	L
			Color2	Hue:	YO	Val:	3	Chr:	MH
	,		Color3	Hue:	$\mathrm{YO}(\mathrm{N})$	Val:	3	Chr:	N
-	08		Color4	Hue:	YO	Val:	1	Chr:	L
\cdots	\bigcirc		Color5	Hue:	YO	Val:	1	Chr:	MH
\bigcirc	-		Color6	Hue:	$\mathrm{YO}(\mathrm{N})$	Val:	1	Chr:	N
,	-		Color7	Hue:	YO	Val:	7	Chr:	L
0	\bigcirc		Color8	Hue:	YO	Val:	7	Chr:	MH
-	\bigcirc		Color9	Hue:	YO(N)	Val:	7	Chr:	N
3	$1 \mathbf{G}$		Clr 10	Hue:	BBV	Val:	3	Chr:	L
		-	Clr 11	Hue:	BBV	Val:	3	Chr:	MH
			Clr 12	Hue:	BBV	Val:	1	Chr:	L
			Clr 13	Hue:	BBV	Val:	1	Chr:	MH
	Limited	Dominant	Clr 14	Hue:	BBV	Val:	7	Chr:	L
Value	3,1,7	3	Clr 15	Hue:	BBV	Val:	7	Chr:	MH
Hue	YO, BBV	YO							
Chroma	L, MH, N	L	At least Which	(s)? An	colors is i why can it	ey not	$\begin{aligned} & \text { rin } \\ & \text { use } \end{aligned}$		
Scheme	Complemen	(w. Neutral)							

Note: the order of "Color1", "Color2", etc. does NOT matter. Just make sure that each color within the scheme is identified and specified.

Note that some colors have been skipped since they are effectively repeats of the same color.
In particular,
$-Y O 1 / N$ is the same color as $B B V 1 / N$,
$-Y O 3 / N$ is the same color as $B B V 3 / N$,
$-Y O 7 / N$ is the same color as $B B V 7 / N$,
because they are each "neutral" (chroma) at the same value .

